Colossal grain boundary strengthening in ultrafine nanocrystalline oxides
نویسندگان
چکیده
منابع مشابه
Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys
Timothy J. Rupert Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697 Jason R. Trelewicz and Christopher A. Schuh Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachus...
متن کاملGrain boundary-mediated plasticity in nanocrystalline nickel.
The plastic behavior of crystalline materials is mainly controlled by the nucleation and motion of lattice dislocations. We report in situ dynamic transmission electron microscope observations of nanocrystalline nickel films with an average grain size of about 10 nanometers, which show that grain boundary-mediated processes have become a prominent deformation mode. Additionally, trapped lattice...
متن کاملGrain rotation mediated by grain boundary dislocations in nanocrystalline platinum
Grain rotation is a well-known phenomenon during high (homologous) temperature deformation and recrystallization of polycrystalline materials. In recent years, grain rotation has also been proposed as a plasticity mechanism at low temperatures (for example, room temperature for metals), especially for nanocrystalline grains with diameter d less than ~15 nm. Here, in tensile-loaded Pt thin films...
متن کاملAnalysis of Strengthening Mechanisms in an Artificially Aged Ultrafine Grain 6061 Aluminum Alloy
The current study adopted a quantitative approach to investigating the mechanical properties, and their relationship to the microstructural features, of precipitation-strengthened 6061 aluminum alloy processed through accumulative roll bonding (ARB) and aging heat treatment. To serve this purpose, the contributions of different strengthening mechanisms including grain refinement, precipitation...
متن کاملAtomic-scale quantification of grain boundary segregation in nanocrystalline material.
Grain boundary segregation leads to nanoscale chemical variations that can alter a material's performance by orders of magnitude (e.g., embrittlement). To understand this phenomenon, a large number of grain boundaries must be characterized in terms of both their five crystallographic interface parameters and their atomic-scale chemical composition. We demonstrate how this can be achieved using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Letters
سال: 2017
ISSN: 0167-577X
DOI: 10.1016/j.matlet.2016.10.035